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Abstract 

Design and optimization of automotive engines present unique 

challenges on account of the large design space and conflicting 

constraints. A notable example of such a problem is optimizing the 

fuel consumption and reducing emissions over the drive cycle of an 

automotive engine.  There are over twenty design variables 

(including operating conditions and geometry) for the above-

mentioned problem.  Conducting design, analyses, and optimization 

studies over such a large parametric space presents a serious 

computational challenge.  The large design parameter space 

precludes the use of detailed numerical or experimental 

investigations.  Physics-based reduced-order models can be used 

effectively in the design and optimization of such problems.  Since a 

typical drive cycle is represented by 1500 to 2000 sample data points 

(engine cycles), it is essential to  develop fast and robust 

computations so that the entire engine cycle computation is done 

close to real-time speeds (on the order of 100-150 milliseconds).  

Harnessing the power of high-performance computing, it is possible 

to perform optimization of automotive drive cycles using massively 

parallel computations.  In this work, we discuss the development of a 

parallel fast and robust reduced-order modeling tool to compute 

integrated quantities such as fuel consumption and emissions (NO 

and CO) over a range of engine drive cycles.  As an illustrative 

example, we perform a massively parallel simulation consisting of 

4096 synthetic drive cycles, representative of a fleet of cars.  The 

impact of parameters such as humidity, initial cylinder pressure, inlet 

air temperature, and residual gas fraction on the performance and 

emission are presented. 

1. Introduction 

Reduced-order models play an important role in many industrial 

applications, especially in the automotive industry. Reduced-order 

models are particularly important in situations where the design space 

is large since this size can preclude detailed numerical or 

experimental investigations.  Design analyses and optimization of 

automotive engines present unique challenges on account of the large 

design space and conflicting constraints.   

Optimizing the fuel consumption and reducing emissions 

over a drive cycle is a prototypical example of such a problem.  Inlet 

pressure, equivalence ratio, humidity, EGR fraction (for Diesel 

engines), inlet air temperature, ignition timing, valve timing (which 

affects residual gas fraction), engine load, engine speed (RPM), along 

with engine dimensions (bore, stroke, compression ratio) constitute a 

vast parametric space for design/optimization studies.  There are over 

twenty design variables and constraints that influence fuel economy 

and emissions.  This large parametric space is further increased when 

one has to consider newer fuels and fuel blends (varying ratios of 

fuel-additive mixtures) further complicating the design/optimization 

problem.  Moreover, the effects of these parameters can vary 

significantly over a typical driving cycle, wherein the operating 

conditions (e.g., engine speed, load, injection/ignition timing) vary 

throughout the driving period.  For instance, a typical 20-30-minute 

drive cycle could include a cold start for the engine, frequent starts 

and stops (traffic lights, intersections) and periods of constant 

speed/load (e.g., highway speeds).  Such a drive cycle would 

experience a combination of engine speeds and loads (and hence fuel 

injected per engine cycle), humidity, and engine inlet air 

temperatures among other variables.  Performing an optimization 

over the entire drive cycle to reduce emissions and fuel consumption 

for such a driving cycle is a daunting task.  Since the engine speed 

varies typically from 800 to 3000 rpm (depending on the load), a 20-

30-minute drive cycle would require about 20,000 to 40,000 engine 

cycles.  For global analyses, engine speed and load (fuel 

consumption) may be recorded at intervals of 1 to 2 seconds, thus a 

typical drive cycle might contain 1000 to 1500 data points (of engine 

cycle data).  For each sampled data point, which represents one 

engine cycle (compression and expansion), engine state variables 

(e.g., temperature, pressure, fuel-air mixture combination) need to be 

computed over 360 crank angle degrees (CAD), typically in intervals 

of roughly 0.5 CAD.  These engine state variables are needed in order 

to compute the engine performance (e.g., torque and power) and 

engine-out emissions (e.g., NO and CO).  Hence, each drive cycle 

requires the evaluation of over a million engine CAD (1,500x720).  

Given the computational load, fast and robust reduced-order models 

describing the engine performance and emissions are required.  In 

order to use such models for design analyses and optimization 

purposes, these drive cycle computations need to be completed in on 

the order of minutes, thus requiring each engine cycle computation to 

be completed in about 100-150 milliseconds.    Furthermore, such a 

tool should be flexible, general-purpose, and user-friendly so as to 

enable its use for a wide range of operating conditions and a wide 

variety of fuels and fuel-additive combinations. 

Several quasi-dimensional models have been developed 

since the early 1980s to study both gasoline and diesel engines (see, 

e.g., [1-11]) with varying degrees of fidelity.  With few exceptions 

(e.g., [1,6,10]), however, these studies do not discuss the wall-clock 

time required for the computation of an engine cycle (a single 

compression and expansion stroke).  The level of fidelity in the quasi-

dimensional model and the wall-clock time required for the 

computation of an engine cycle are important considerations when 

one is interested in the simulation of a large number of drive cycles 

for design analyses and optimization, and real-time control.  

Furthermore, most 0-D, 1-D, and other quasi-dimensional codes 

described in the open literature are primarily aimed at solving a 

single engine cycle (–i.e., 360 CAD) for a given set of operating 

conditions. 
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The primary focus of this work was to develop a flexible, 

general-purpose, and user-friendly tool to simulate long drive cycles 

of vehicles operating under a wide range of operating conditions and 

fuel/fuel-additive combinations.  Emphasis was laid on using fast, 

robust computations in order to complete an entire engine cycle 

computation in close to real-time speeds (on the order of 100-150 

milliseconds).  Since the design and state spaces are large, one has to 

harness the power of large-scale computing to reduce the overall 

wall-clock time associated with such computations. The availability 

of large computer clusters, and more recently, cloud computing, has 

made possible concurrent evaluation of a large combination of 

parametric cases and streamlined analyses of the results in a matter of 

minutes, rather than days or months.  There are relatively few studies 

that use large-scale computing for system-level analyses [12-13].   To 

the knowledge of the authors, this work is the first to implement and 

demonstrate the use of physics-based engine models for large-scale 

analysis of a fleet of cars using concurrent computations of the 

various parametric cases.   

This work describes the development of pMODES (parallel 

Multi-Fuel Otto Diesel Engine Simulator), a framework aimed at 

accomplishing the goals mentioned above.  This work builds on the 

modeling tool described in [1].   Ref. [1] describes the various sub-

models used in pMODES along with detailed validations.  All the 

sub-models described in Ref. [1] are widely used in other quasi-

dimensional models and their accuracy and reliability has been well-

documented.  Furthermore, the modular architecture of pMODES 

enables users to implement other sub-models of their choice.  

pMODES includes several enhancements to the tool described in [1] 

in order to enable its use for a larger spectrum of design, analysis, 

optimization, and real-time control studies.   The design tool has been 

fully parallelized in order to streamline the workflow management to 

concurrently conduct large-scale parametric sweeps of the drive cycle 

of a fleet of cars. The set of species included in the combusting 

mixture has been expanded to include charged species.  A set of 

seven charged species that enables the computation of the temporal 

variation of ion current and location (in CAD) of the ion-current peak 

for engine diagnostics and control has been implemented.  The set of 

neutral species considered in the computations includes species such 

as C, CH, and C2H2, which allows the inclusion of simplified soot 

models as well. 

The above-mentioned features in pMODES enable 

massively parallel simulations of the drive cycles of a fleet of cars 

with varying operating conditions.  pMODES can thus be used as a 

virtual dyno, which can complement experimental dyno data or be 

used to conduct large parametric sweeps over a range of engine 

design parameters with minimal user intervention. pMODES can also 

be used for detailed design analyses for next-generation engines.  As 

an illustrative example, we present results obtained by conducting a 

large-scale parametric sweep over synthetic drive cycles for a single-

cylinder gasoline engine (multi-cylinder engines can also be studied 

with this tool).  Four different values of each of the four variables, 

namely, initial cylinder pressure, humidity ratio, inlet air temperature, 

and residual gas fraction (RGF) were varied for sixteen different 

synthetic drive cycles giving rise to 4,096 cases in all (44x16 = 

4,096).  These cases were run on 4,096 processors on a mid-sized 

cluster with an Intel Sandy Bridge architecture and on the IBM Blue 

Gene/Q (BG/Q) supercomputer with PowerPC A2 1600 MHz 

processors, both at Argonne National Laboratory. 

This paper is organized as follows.  Sections 2 and 3 briefly 

describe the model and the method of solution. Section 4 describes 

sample results for the single-cylinder gasoline engine followed by a 

summary and conclusion of the main findings of this work. 

2. Model Description 

Figure 1 shows the solution methodology of pMODES.  As 

seen in Figure 1, the main physics-based engine module computes the 

temporal variation of the important engine state variables, namely, 

temperature (burned and unburned gas), pressure, and mixture 

composition. This information is used to compute emissions (e.g., 

NO, CO, soot) and ion current using reduced-order models.  

Optionally, the engine wall temperature can also be computed as 

described in [2].  Furthermore, the computed cylinder pressure can be 

used to evaluate engine performance metrics such as BMEP, torque, 

and power. Details of the solution procedure for obtaining the 

cylinder state variables along with emissions, wall temperature and 

ion current (or voltage) and are described in [1, 2, 14, 15].  Detailed 

validation of the ion-current sub-models used in this work have been 

discussed in [14, 15] and hence will not be presented here.  Briefly, 

the energy equation describing the relationship between the crank 

angle and cylinder pressure is solved to obtain the temporal variation 

of engine pressure along with the burned and unburned gas 

temperature as shown in Eqns (1) – (3).   
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Figure 1: Solution methodology of pMODES. 

Knowing the initial cylinder mixture composition (air-fuel 

ratio, EGR fraction, humidity ratio, and residual gas fraction) and the 

fuel burn rate (as described by a user-defined Weibe function), it is 

possible to compute the temporal variation of the composition of the 

burned gas.  Based on the mixture composition, temperature, and 

pressure, it is possible to compute the equilibrium composition of the 

burned gas at a given crank angle.  The equilibrium composition is 
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used to compute emissions and ion currents based on reduced-order 

models as described Eqns (4) - (6).    
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In the above equation, R1 = (kf,1a + kf,1b+kf,1c)[CO]eq[OH]eq, R2 = 

kb,2[CO]eq[O2]eq, R3 = k f,3[CO]eq[O]eq[M]eq, and [M] = [H2] eq + 

6.5[H2O] eq + 0.4[O2] eq + 0.4[N2] eq.  All the concentrations (such as 

[N2] eq) are equilibrium values at a given temperature and pressure 

corresponding to a given crank angle. 
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3. Method of Solution 

The main solver in pMODES has been designed to be 

highly modular in order to ensure portability and extensibility.  

Special attention was paid to the code layout and dataflow to ensure 

that new models for emissions and ion current can be included at a 

later stage with minimal changes in the overall structure of the code.  

As shown in Figure 1, each parametric case of pMODES is run as a 

unique MPI rank (in our study, the number of ranks is set to the 

number of cores).   This enables a large number of cases to be run 

concurrently for design analyses and optimization studies.  Each MPI 

rank reads its input parameters (design variables such as initial 

cylinder pressure, air temperature, humidity ratio, etc.) along with the 

fuel input per cycle, engine speed, ignition/injection timing, and 

valve timing (drive-cycle information), from a uniquely named input 

file, completes the computation, and writes the solution to a unique 

solution file.  This I/O design was adopted to minimize data 

communication and also for ease of post-processing of the computed 

variables.  Robust solution techniques were used to reduce the overall 

computational time and optimize the single-processor performance.  

The number of parametric cases to be conducted concurrently is 

decided by the user at runtime by assigning ‘n’, the number of 

processors.  This makes pMODES highly flexible and hence suitable 

for various computer architectures, from desktops to leadership-class 

machines (supercomputers) equipped with many thousands of cores.  

The simple and self-contained code structure makes pMODES ideally 

suited for cloud computing.  Over 90% of the computational time is 

spent in computing the equilibrium concentration of the twenty six 

species assumed to be present in the combustion mixture.  A 

modified Newton-Raphson scheme with a robust, physics-based 

relaxation methodology was used to accelerate convergence and 

reduce the computational time required to obtain the equilibrium 

composition of the mixture. The system of equations, cast in a 

matrix-vector form as discussed in [15] was solved using an 

optimized LAPACK subroutine, thus greatly increasing the 

portability of pMODES to various architectures. 

4. Results and Discussions 

This section describes the use of pMODES to study the 

performance and emission characteristics of a fleet of cars consisting 

of 4096 different synthetic drive cycles.  A single-cylinder gasoline 

engine with fixed dimensions is used for this illustrative example.  

Spark timing was fixed at 26 bTDC and the combustion parameters, 

such as combustion duration and Wiebe parameters, were kept 

constant for all the cases considered.  Spark timing, combustion 

parameters, and engine dimensions are all design variables that can 

be user-defined parameters but which have been kept constant for this 

study for the sake of simplicity.  The impact of varying four 

parameters (namely, humidity, initial cylinder pressure, inlet air 

temperature and residual gas fraction) on the performance, emissions, 

and ion current are presented.  The combination of these four 

parameters was chosen for illustrative purposes only.  The initial 

cylinder gas composition (moles of O2, N2, H2O, CO2, and fuel) 

depend on the choice of these parameters.  This particular case-study 

thus demonstrates the impact of initial cylinder composition on the 

engine performance and emissions.  pMODES can also be used to 

study the parametric variation(s) of any other arbitrary set of engine 

variable(s) based on the user’s requirements or engine experimental 

data.  For instance, instead of fixing the initial cylinder pressure, one 

could conduct a parametric simulation of the air-flow into the 

cylinder.  In such a case, pMODES would calculate the initial 

cylinder pressure based on the inlet air temperature, residual gas 

fraction and humidity.  Table 1 shows the parameters and their range 

of variation.    Each of these drive cycles has 1500 data points with 

each data point representing the fuel injected per cycle.  Thus, if it is 

assumed that the data is sampled every second, the drive cycle with 

1500 data points corresponds to 1500 seconds (25 minutes) of engine 

test time.  The same procedure can be used to study multi-cylinder 

engines.  

Table 1. List of parameters and their range of variation. 

Variables 

Case Initial 

cylinder 

pressure, p 

(atm) 

 

Humidity 

ratio, w (%) 

Inlet air 

temperature, Tc 

(C)  

RGF (%) 

1 0.88 0.0 28 0 

2 0.92 1.0 29  1 

3 0.95 2.0 30 2 

4 1.0 2.75 31 3 

 

A wealth of information about the impact of varying these 

parameters independently over the operating range on emissions and 

performance can be obtained.  We discuss cases wherein a single 

synthetic drive cycle is subjected to a variation of each of the 

parameters shown in Table 1 while keeping the others constant. The 

impact of each parameter varied over its prescribed range on the 

engine-out NO and CO is described next. 

Figure 2 shows the variation of the fuel input (in mg/s) in a 

synthetic drive cycle and the corresponding effect of varying the 

humidity ratio on the engine-out NO and CO.  The humidity ratio (w) 

is varied from 0% (dry air) to 2.75% (near saturated air).  The initial 
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cylinder pressure was maintained at 0.88 atm, temperature was fixed 

at 28C and the RGF was set to zero.  Figure 2 shows that increasing 

the humidity ratio decreases the engine-out NO while it increases the 

engine-out CO.  Figure 2 shows that the reduction in the engine-out 

NO (from dry air to saturated air) could be as high as 20-25%.   

Figure 2: Effect of humidity on engine-out NO and CO. 

The reduction in NO with increase in humidity is expected.  

Since the initial cylinder pressure and air inlet temperature are fixed, 

increasing the fraction of humidity (H2O) reduces the mass of dry air 

and hence the N2 and O2 content in the cylinder.  Thus, increased 

humidity has an effect similar to the introduction of EGR, leading to 

reduced engine-out NO.  This information can be used by control 

engineers to adjust the required EGR fraction for a given target level 

of NO reduction, thus minimizing the harmful effects of EGR on the 

engine. Figure 2 also shows that increasing the humidity ratio 

increases the CO by as much as 20-25%. The increase in engine-out 

CO can be explained on the basis of the reduced-order CO model 

described in Eqn. 5.  It is seen that the term R3 has a strong 

dependence on the concentration of H2O (via the term [M]) and is 

directly proportional to the production rate of CO as shown in Eqn. 

(5).  The higher humidity level implies an increase in R3 leading to 

increased levels of engine-out CO.  Integration of the area under the 

NO and CO curves would yield the overall engine-out NO and CO in 

mg (with appropriate conversions from PPM to mg) for a given drive 

cycle or a range of drive cycles. This information can be used by 

design engineers to forecast emissions while adhering to constraints 

imposed by CAFE (Corporate Average Fuel Economy) regulations 

for newer fleet of cars.  

For the sake of clarity, Figure 3 shows a shorter snapshot of Figure 2 

over a period of 50 seconds.  The impact of humidity ratio on the NO 

and CO is seen more clearly in Figure 3.    

Figure 3: Magnified view (shorter time scale) of Figure 2. 

Figure 4 shows the effect of varying the initial cylinder pressure on 

the engine-out NO and CO for a fixed humidity ratio (w = 0%), inlet 

air temperature (28 C), and RGF (0%). It is seen that increasing the 

initial cylinder pressure, for the same fuel input, implies greater 

initial air mass (on account of the higher fixed initial cylinder 

pressure).  As the initial cylinder pressure is increased, the 

concentrations of N2 and O2 increase, thus leading to higher values of 

engine-out NO.  It is also seen that the lower the initial cylinder 

pressure, the higher are the values of engine-out CO.  

Figure 4: Effect of initial cylinder pressure (p) on NO and CO. 

 Figure 5 shows the effect of inlet air temperature (Tc) on 

NO and CO for the same drive cycle with p = 0.88, w = 0%, and RGF 
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= 0%.  It is seen that variation of the inlet air temperature has a 

minimal effect on the engine-out NO and CO. From Figures 2, 4, and  

Figure 5: Effect of inlet air temperature (Tc) on NO and CO. 

5 it is seen that it is possible to obtain good qualitative information 

about the impact of various operating conditions on the engine-out 

emissions.  With well-calibrated models, detailed quantitative 

information can also be obtained from such studies.  From Figures 2 

to 5, it is seen that minimizing NO and CO can lead to conflicting 

constraints (a design parameter reducing NO leads to increasing CO).  

The large-scale parametric simulation of long drive cycles enables 

design engineers to evaluate an optimum operating envelope to meet 

regulatory constraints on fuel consumption and emissions while 

optimizing engine performance. 

In addition to the impact of various operating parameters 

on emissions, it is also possible to ascertain parameters such as 

exhaust temperature and pressure corresponding at EVO (exhaust 

valve opening).  The temperature and pressure at EVO directly 

impact engine efficiency and hence an important design 

consideration.  Figure 6 shows the impact of humidity on the exhaust 

temperature (only 20 sec has been shown for clarity).  As it can be 

seen from Figure 6, dry air (w = 0%) leads to a lower exhaust 

temperature as compared to near saturated air.  Since the cylinder 

pressure is kept constant at 0.88 atm for both the cases (dry and 

saturated air), the initial mass of air in the cylinder is higher for dry 

air as compared to near saturated humid air.  The increased air mass 

leads to a low exhaust temperature.  Since exhaust temperatures 

impact the overall engine performance, it might be important to 

consider their role in the overall optimization problem (engine 

performance and emissions). 

Figure 6: Effect of humidity on the exhaust temperature. 

In addition to performance and emission characteristics, 

pMODES can be used for engine diagnostics and control 

applications.  Ion current (or voltage) signals have been used to 

evaluate the combustion quality and control in engines [16-19].  

pMODES computes the temporal variation of important charged 

species required to compute the ion current signal in engines.  The 

peak ion signal and its location computed by pMODES can be used 

for formulating a control strategy.  It can also be used for advanced 

engine diagnostics by correlating the location and magnitude of the 

current peak with other engine state variables, such as peak pressure, 

temperature, ignition timing, and equivalence ratio.  Figure 7 shows 

the impact of RGF on the ion current for a fixed drive cycle with the 

inlet temperature set at 28C, relative humidity set at 0%, and the 

initial cylinder pressure set at 0.88 atm.   It is seen that increasing the 

RGF from 0% to 3%, yields a higher current signal.  This trend can 

be explained by noting that presence of RGF reduces the fraction of 

molecular oxygen (O2) in the cylinder for a given inlet cylinder 

pressure.  The magnitude of the current signal is strongly influenced 

by the electron concentration in the mixture on account of their 

higher mobility.   However, the concentration of electrons in a 

combustion mixture is strongly influenced by the presence of O2.  

Electrons in a combustion mixture attach themselves to O2 via three-

body collisions (e- + M + O2  O2
-+M).  Thus, a higher 

concentration of O2 in the mixture (as in the case with no RGF) leads 

to increased electron attachment, leading to a lower concentration of 

electrons and hence a lower magnitude of ion current.  Ion current 

traces such as those shown in Figure 7 can thus be used for diagnostic 

and control purposes. 
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Figure 7: Effect of RGF on ion current.  

Thus far we have discussed the impact of a single design 

parameter (e.g., humidity, initial cylinder pressure, RGF) on the 

performance, emission, and diagnostic characteristics.  More complex 

correlations based on the simultaneous variation of two or more 

design parameters can also be studied.  In addition to understanding 

and evaluating the impact of design parameter(s) on the optimization 

objectives (fuel economy and emissions), a wealth of information can 

be obtained from a large parametric sweep over different drive 

cycles.  Designers can use “filtering” to extract basic statistics and 

identify input configurations of interest.  For instance, one can 

determine peak temperatures and pressures over an operating 

envelope and ensure that the temperature peaks do not exceed 

prescribed design limits.  The filtering process can be used in the 

design phase of newer engines to isolate operating conditions that 

yield peaks above a threshold.  Empirical distribution 

characterization can be used to extract cross-configuration 

information. Such distributions can be used, for example, to 

determine fleet-wide fuel economy [20] or to characterize emissions 

as a function of ambient pressure.    Furthermore, one can conduct 

sensitivity analysis to determine how operating conditions or other 

independent variables affect observables of interest. Sensitivity 

analysis can be used, for example, to determine the impact of 

different fuels and fuel-additive combinations on the performance 

and emission characteristics of a fleet of cars.  Using the data 

generated from these large parametric sweeps, tradeoff visualization 

and analysis can be used to identify a configuration that has worse 

figures of merit as compared to some other configuration. Such 

analyses can also be used, for example, to identify vehicle 

configurations wherein a small penalty in performance would yield 

substantial gains in fuel economy or reduction in emissions. 

The capabilities of pMODES can be used as one “closes the loop” 

between the simulation and analysis for purposes of simulation-based 

design optimization [2] or optimal experimental design to determine 

configurations that should be tested on a dyno.   Furthermore, 

pMODES can be used to generate input configurations in order to 

optimize a design objective of interest. Distributional information can 

be used to generate scenarios (e.g., ambient or operating conditions, 

drive cycle variations) for use in sample average approximation for 

optimization under uncertainty [21]. Similarly, tradeoff analysis 

forms the basis for simultaneously optimizing multiple conflicting 

objectives [22,23], such as performance and engine 

lifetime/reliability. 

 

As pointed out earlier, computational speed, scalability, and 

portability are important considerations in the design of pMODES.  

Indeed, these attributes are important when conducting large-scale 

parametric sweeps for design analyses and optimization studies.  In 

order to test the computational speed, scalability, and portability, 

pMODES was run on two different machines, namely, a mid-sized 

cluster with  5000 Intel Sandy Bridge 2.6GHz cores, and 

supercomputer (IBM, Blue Gene Q) with  786000 cores powered by 

PowerPC A2 1.6 GHz processors.  In addition to testing the 

portability, running these simulations on two different machines 

yields important performance metrics (e.g., wall-time) for different 

architectures and compilers.  Up to 4096 different parametric cases 

were run concurrently on each of these machines.  Table 2 shows the 

total wall time for evaluating a number of drive cycles equal to the 

number of cores (with 1500 data points) on each of these systems.  It 

is seen that for both machines considered, as the number of cores 

were increased with a proportional increase in the number of cases, 

the total wall-time for the concurrent computation was nearly 

constant.  This is to be expected since each of the parametric cases is 

independent of the others. Table 2 thus shows excellent weak scaling 

on both machines. We attribute the slight increase in overall 

computational time as the number of cores (and thus cases) increases 

primarily to imbalances in individual case solution times and to 

increased contention for the I/O operations. Furthermore, we see 

greater imbalances across cases for the mid-sized cluster as compared 

to the supercomputer. 

Table 2. Timing studies on IBM (BG/Q) and Intel Sandy Bridge 
cores. 

Cores Sandy Bridge 

(min:sec) 

IBM (BG/Q) 

(min:sec) 

32 3:15 - 

64 3:20 - 

128 3:20 - 

256 3:20 - 

512 3:32 18:14 

1024 3:46 18:52 

2048 3:53 19:01 

4096 4:26 19:08 

 

Table 2 shows that the time to simulate an individual drive 

cycle on the IBM BG/Q is about 6 times longer than the Intel Sandy 

Bridge. This difference can be attributed to the hardware and 

software differences between the two machines (clock-speed, 

memory, compilers, etc.).  However, it should be noted that the 

computation of the entire drive cycle estimated to be about 25 

minutes of real-time is accomplished in less than 20 minutes with 

each of the machines, thus demonstrating near real-time computation 

speeds.  The supercomputer, with nearly 786000 cores, would enable 

a larger set of concurrent calculations for more massive parametric 

studies as compared to the mid-sized cluster. Since massive 

parametric sweeps can be conducted at near real-time speeds, this 
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work demonstrates an important step forward in the use of massively 

parallel computing for design analyses and optimization of 

automotive engines. 

5. Summary and Conclusions 

This work discussed the development of pMODES, a parallel, 

reduced-order modeling engine modeling tool.  pMODES is 

primarily aimed at concurrently conducting large-scale parametric 

studies for design analyses and optimization studies involving a fleet 

of automotive engines.  pMODES has a modular structure that 

enables its extension to new reduced-order models for computing 

emissions and performance of engines.  Robust solvers enable fast 

and accurate computation of the equilibrium concentrations required 

to evaluate engine-out emissions such as NO and CO along with the 

temporal variation of the ion current.  As an illustrative example, a 

large-parametric study over four different design variables over 

sixteen different drive cycles (4096 total cases) was conducted 

concurrently on large computing clusters.  Important trends of the 

design parameters on the engine performance and emissions were 

demonstrated.  Excellent weak scaling was demonstrated on two 

different architectures. Furthermore, it was shown that computations 

of a fleet of cars (range of driving conditions and drive cycles) could 

be completed in near real-time speeds.  pMODES thus has been 

demonstrated to have the potential for use in the large-scale design 

analyses of automotive engines. 
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